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SUMMARY

The Use offace-gearsin helicopter transmissions was explored.

A lightweight, split-torque transmission design utilizing face-

gears is described. Face-gear design and geometry were investi-

gated. Topics included tooth generation, limiting inner and outer

radii, tooth contact analysis, contact ratio, gear eccentricity,

grinding, and structural stiffness. Design charts were developed

to determine minimum and maximum face-gear inner and outer

radii. An analytical study showed that the face-gear drive is

relatively insensitive to gear misalignment with respect to trans-

mission errors, but the tooth contact is affected by misalignment.

A method of localizing the bearing contact to permit operation

with misalignment was explored. Two new methods for grinding

of the face-gear tooth surfaces were also investigated. The proper

choice of shaft stiffness enabled good load sharing in the split-

torque transmission design. Face-gear experimental studies were

also conducted. These tests demonstrated the feasibility of face-

gears in high-speed, high-load applications such as helicopter
transmissions.

INTRODUCTION

The Advanced Rotorcraft Transmission (ART) program is an

Army funded, joint Army/NASAprogram to develop and demon-

strate lightweight, quiet, durable drivetrain systems for next

generation rotorcraft (ref. 1). One contract team participant,

McDonnell Douglas Helicopter Co. (MDHC)/Lucas Western

Inc., developed a novel split torqueARTconfiguration using face-

gears (refs. 2 and 3). The geometry and design of face-gears and

computerized simulation of their meshing have been developed

by another member of the team, the University of Illinois at

Chicago.

Manufacturing of face-gears was proposed many years ago by

the Fellows Corporation. Face-gears have had widespread use in

low power applications (fig. 1) but have not had much develop-

ment for design and manufacturing practices necessary for high

power use.

The theory of face-gear drives has not been developed suffi-

ciently for the needs of the designers and manufacturers. Publica-

tions in this area in English by E. Buckingham (ref. 4) and

D.W. Dudley (ref. 5) can be considered only as a brief description

of face-gear drives. J. Davidov (ref. 6), and F.L. Litvin and

L.J. Liburkin (ref. 7) have published the results of their investiga-

tion of face-gear drives in Russian literature, but these works are
not familiar in the western world.

The advantages of face-gear drives are: (1) reduced sensitivity

of the bearing contact to gear misalignment, (2) reduced level of
noise due to the very low level of transmission errors, (3) more

favorable conditions of transfer of load from one pair of teeth to

the next pair of teeth, and (4) accurate axial location of the pinion

is not required in contrast to such requirement for the spiral bevel

opinions (fig. 2). Statement (3) is based on the advantage of

involute gearing to have a common normal for those teeth that are

finishing and starting the meshing. The analysis shows that the

face-gear drives maintain the conjugate action because the face-

gear teeth are generated as conjugated to the pinion teeth. The

amount of misalignment that can be tolerated is easily controlled



bythemanufacturingprocess.Thecomparisonmadewasfor
misalignmentsgreaterthanspiralbevelgearscantolerate.

Themajorityoftheworkinthispaperhasbeenpresentedin
reference8,withtheexceptionofface-geargrindinginvestiga-
tions.Thispapershowsthatwithproperdesignface-geardrives
canfindasuccessfulapplicationinhighpowerapplications.The
resultsofcomputerizedsimulationofmeshingandbeatingcon-
tactandexperimentaltestofface-geardrivesconfirmthatsuch
drivescanbesuccessfullyapplied.

Thepapercoversapplicationofface-geardrivesinhelicopter
transmissions.Theadvantageofthisdesignisthepossibilityto
splitthetorquebetweentwoface-geardrives.Thisresultsina
significantsavingsin transmissionweight.Thedesignofface-
geardrives,simulationof meshingandbearingcontact,and
grindingoftheface-geartoothsurfaces,havebeenanalytically
described.Computerprogramsanddesignchartshavebeen
developed.Thetorquesplithasbeenconfirmedbyfiniteelement
structuralanalysis.Prototypeface-geardriveshavebeensuccess-
fullytestedatNASALewisResearchCenter.

All typesofgears,includingface-gears,havenicheswhere
theiradvantagesaregreaterthancompetingtypes.Thisprogram
isanattempttoexploreanapplicationwhereface-gearsappearto
offeranadvantage.

SPLIT-TORQUEDESIGN

Theideaoftorquesplitisillustratedinfigure2.Figure2(a)
showsanalternativeversionofthetorquesplittingbytwospiral
bevelpinions,a and b, designed as one rigid body. Figure 2(b)

shows the second version of the split of torque when a single spur

(or helical) pinion is in mesh with two face-gears. An advantage

of the face-gear version is that the same transmitted power results

in a reduced load on the beatings in comparison with the spiral

bevel version shown in figure 2(a). Asecond advantage is that the

pinion is a conventional spur (or helical) gear compared to a

complex spiral bevel design with two pinions.

The general configuration of the MDHC/Lucas ART design is

illustrated conceptually in figure 3. There are two engines rated at

2500 hp each which combine to drive the rotor shaft with 5000 hp.

The transmission is designed to carry 3000 hp per side for a one-

engine inoperative condition. Power flows from the engine

through an ovemmning positive-engagement clutch to a spur

pinion, which is lightly restrained radially. The spur pinion drives
a downward-facing face-gear and an upward-facing face-gear.

The face-gear shafts terminate in spur pinions, which drive a large

combining gear. The hub of the combining gear is attached to the

sun gear of a high contact ratio planetary gear set where the carder

is the output member and is attached to the rotor shaft. A small

pinion is driven at the aft side of the main combining gear. This

pinion drives another face-gear mounted on the NOTAR TM (no

tailrotor) driveshaft, which leads aft directly to a NOTAR TM fan.

The concept of torque split appears to be a significant devel-

opment wherein an input spur-gear pinion drives two face-gears

arranged to provide an accurate division of power. This division

greatly reduces the size and weight of the comer-turning hardware

as well as the size and weight of the next reduction stage. The

predicted payoff is greatly reduced weight and cost compared to

conventional design.

The pinion which serves the two face-gears is a conventional

Spur gear with an even number of teeth. If the spur gears were

rigidly located between the two face-gears, precise torque split-

ting would be very unlikely. The spur gear has a free-floating

mount which allows self-centering between the two face-gears.

The effect of normal manufacturing inaccuracy on torque split

will be compensated by automatic relocation of the input pinion

to its balanced position as long as compliant support is provided

for the front end of the pinion shaft. It will be shown analytically

(see next section) that precise torque splitting (with +1.0 percent)

will take place.

More importantly, torque splitting between two driven gears

by a free-floating spur-gear pinion has been used for many years
in truck transmissions. The first known truck application was the

experimental Road Ranger transmission produced by the Fuller

Transmission Division of the Eaton Manufacturing Company in

1961. ,Truck transmissions using this principle have been in

production since 1963. In addition to accurate torque splitting, it

was found that gear noise was reduced and gear life was increased.

Thus the use of a free-floating pinion as a torque-splitting device
is well substantiated.

The gear chain formed by the input pinion, two face-gears, two

spur pinions and the combining gear is a closed loop locked train.
Errors of gear tooth orientation may cause a nonsatisfactory

system backlash or even the impossibility to assemble the dosed

loop train. However, since the face-gears and the combining gear

are provided with prime number teeth, indexing by assembly will

enable the tooth angular orientation inside of the chain to change

and provide the satisfactory system backlash. This is similar to the

practice of assembly of locked trains used in marine drives. In

reality, there is a need in one test assembly only. Then, the required

indexing can be accomplished in accordance with the developed
chart.

FINITE ELEMENT STRUCTURALANALYSIS FOR THE

SPLIT-TORQUE GEAR DRIVE

The success of a split-torque gear-train design depends on the

equal division of the torque to the two output shafts. Conceptually,

the floating pinion design makes the system of the pinion shaft a



two-forcemember.Thetransmittedforceson the two diametri-

cally opposite meshing points on the pinion have to balance each

other to achieve equal torque splitting.

The analytical effort to validate the split-torque concept was
conducted through use of the finite element method. To analyze

the deflection and the percentage of torque splitting, the elasticity

of the gear structure and pinion shaft support have to be consid-
ered first. The finite element model provides an accurate approach

to include the stiffness and the deflection of the gear structure. The

overall model of the split-torque gear train is shown in figure 4.

This model hasbeen used to analyze the torque-splitting percent-

age for different support conditions as shown in table I. The

stiffness of the front and rear support of the pinion shaft were

varied to determine their effect on torque split (cases 1 to 4,

table I). The contacts between the pinion and the two face-gears

were modeled using gap elements. The torque split was deter-

mined using gap element reaction forces as calculated using finite

element analysis. Among the cases studied, the most even torque

split was provided in case 9 when the stiffness of the shaft's front

support was 6.0 × 104 lb/in. This is an order of magnitude less than

a typical bearing support.

The use of backlash control to compensate for the difference

in the tangential stiffness between the two output shafts was

investigated. In reality, the exact compliance between the teeth of

the three gears is not practical. The deviation from the common

engagement is caused not only by the different stiffness of the two

paths but alsoby the indexing problem associated with the closed-

loop gear train design. Additional analyses have been performed

to incorporate the initial clearance on any one side of the pinion

to simulate unequal backlash conditions. This was done by setting

an initial clearance in the appropriate gap element. The influence

of unequal backlash on load sharing in the split-torque drive

system is also given in table I. The effect of clearance on torque

split was small but should be considered when free-tuning a

design for optimal load sharing. The analysis results are the

baseline for using backlash control in assembling an equal torque-

splitting drive in practice.

A structural dynamic analysis was carried out to determine a

resonance free system by stiffening the fully compliant support at
the front end of the pinion shaft. The selection of the pinion

support with the designed spring rate to remain nearly equal

torque splitting and to meet the structural dynamics criteria is the

key to the design of the split-torque mechanism. When an in-plane
spring rate of 6× 104 lb/in, was designed for the input shaft front

support, the first natural frequency of the shaft was 30 percent

higher than the operational rotating speed. A few devices which

may provide the compliance to obtain even torque splitting were

studied. The torque-split mechanism must be as compliant as

possible yet stiff enough to ensure the frequency of the first

vibrational mode is higher than the rotating speed of the pinion
shaft to avoid resonance. The current effort in design concentrates

on a squirrel cage spring support and a resilient bearing mount.

The design should preclude any slip of the beating outer ring.

Also, the working range of the spring should be large enough for

the movement of the pinion shaft to find its new center position
of balance.

The dynamic effects of the input shaft will be tested during the

torque-split test. It is observed that the radial displacement of the

input pinion is restricted since it is opposed by the face-gear teeth
with which the pinion is in mesh. Recall that the pinion is in

simultaneous mesh with two face-gears. In addition, friction that

accompanies the torque transmission will cause a damping effect

to resist the resonant vibration response. The small displacements
that do occur will have no effect on the overrunning dutch due to
the soft shaft mount and the remote location of the clutch with

respect to the input pinion.

In addition to the analysis of torque splitting, the accurate

rating system for the face-gear is under development using TCA

and fmite element method. Conservative approximation in calcu-

lating bending stresses and contact stresses has been used in the

current design. The calculation shows that the strength of the face-

gears is competitive to other types of gears. Moreover, the

feasibility in constructing a split- torque configuration make the

gear train a more compact design than the others. The risk of

scoring is eliminated by localization of bearing contact. The

accomplishment of a circumstantial rating system will further

promote the applications of face-gears.

INFLUENCE OF GEAR ECCENTRICITY

The influence of gear eccentricity is important for determina-

tion of conditions of the splitoftorque when one pinion is in mesh

with two face-gears, and the pinion and the gears have eccen-

tricity. Due to transmission errors the driven face-gears will

perform rotation with slightly different angular velocities, and

this means that the torque split will be accompanied with deflec-
tions of tooth surfaces.

The function of transmission error is defined as,

_,, Nil., .,,_
A_i = _,2-_-2 _, 1-_,1)

(1)

where NI andN2 are the number of teeth of the pinion and the gear,

respectively; _i and _ are the angles of rotation of the pinion

and the gear, respectively; q}i' is the value of _1 that corresponds

to_=0.

The results of investigation show that the transmission error

function due to eccentricity of the pinion or the gear only is an

approximate harmonic curve. The periods of these curves are the
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timeperiodsfor onerevolutionof thepinionandthe gear,

respectively. The function of transmission errors for the case with

eccentricity of both the pinion and the gear is a periodic one as

shown in figure 5. The period of this function is determine d by the

lowest common multiple of the numbers of teeth of the pinion and

the gear.

The great advantage of face-gear drive with an involute pinion

is that the pinion teeth are equidistant and have a common normal.

This means at the end of the meshing of a pair of teeth and the

beginning of meshing a next pair of neighboring teeth, both tooth

pairs will have a common normal. Therefore, the change of tooth

meshing at the transfer point will not cause a jump of angular

velocity. This statement is correct as well for eccentric conven-

tional involute gears. This implies that noise and vibration are

relatively insensitive to gear misalignment.

BASIC TOPICS OF GEAR DESIGN

AND MANUFACTURING

Pitch Surfaces

In the case of bevel gears the pitch surfaces of the gears are two

cones of angles Yl and 2'2-The cones roll over each other in the

process of transformation of motions (fig. 6(a)).

In the case of a face-gear drive with intersected axes of motion

the pitch surface of the pinion is the cylinder of radius rpl, and the
pitch surface of the face-gear is the cone of angle y where _ is the

angle of intersection (fig. 6(b)). The pitch surface of the face-gear

is a plane if y= 90 °. The pitch point P is the point of intersection

of the generatrix of the pinion pitch cylinder with the instanta-

neous axis of rotation 0I. The location of point P affects the

conditions of pointing and undercutting of the fuce-gear teeth.

Generation of Face-Gear Drives with Localized

Beating Contact

The generation of the face-gear by a shaper is shown in

figure 7. The shaper and the gear rotate about intersecting axes

with angular velocities to(s) and o9(2) that are related as follows

to(_) N2 (2)
to(z) Ns

The designations ors and 2 indicate the shaper and the face-gear,

respectively.

If the face-gear is generated by a shaper that is identical to the

pinion, the process of generation simulates the meshing of the
pinion with the face-gear being in line contact at every instant. In

reality, such type of contact is not useful in practice due to its

sensitivity to misalignment. The errors (tolerances) of assembly

and manufacturing can cause separation of the contacting sur-

faces and result in the undesirable contact at the edge. To avoid

this, it is necessary to use a shaper with a larger number of teeth.

The difference is denoted as AN = N s - )71 (NI is the number of

the pinion teeth; AN ranges from 1 to 3).

The geometric aspects of localization of bearing contact are

illustrated with the sketch shown in figure 8. We may imagine that

three surfaces- Y-s, El, and .22- are in mesh with each other

simultaneously. Surfaces E s and Z2 are in line contact at every

instant in the process for generation. Surfaces Es and El are also

in line contact being in an imaginary internal engagement as

shown in figure 8. The imaginary meshing of the shaper and the

pinion may be considered as a meshing with the following

features: (1) the center distance B depends on the difference AN

of the number of teeth of the shaper and the pinion and (2) there
is an instantaneous axis of rotation that intersects the extended

center distance OsOl at point P and is parallel to the axes of the

pinion and the shaper.

The location of point P can be determined as the point of

intersection of the common tangent to the base circles of the

shaper and the pinion with the extended center distance OsOl

(fig. 8). PM is the common normal to the involute shapes of the

shaper and the pinion.

Meshing of the Shaper, the Pinion, and the Face-Gear

The shaper tooth surface Es and the face-gear tooth surface Z2

contact each other at every instant at a spatial line Ls2. Contact
lines Ls2 on the shaper tooth surface Y-sare shown in figure 9(a).

The imaginary meshing of the shaper and pinion tooth surfaces,

Zs and Y_I,has been illustrated with the drawings of figure 9.

Surfaces Y_sand E1 contact each other at every instant at a line Lsl.

Lines Lsl on surface E s are shown in figure 9(b). However, the

pinion tooth surface El and the face-gear tooth surface Y-,2contact

each other at every instant at point M, that is the point of

intersection of lines Lsl and Ls2 (fig. 9(c)). The contact of the

pinion and the face-gear surfaces under the load is a contact over

an elliptical area; the center of such an ellipse is the theoretical

contact pointMofZ2 and El. The input design data for an example

of a face-gear drive are given in table II. These data are used for

computations demonstrated in the following sections.

Contact lines Ls2 on the face-gear tooth surface Y--,2are shown

in figure 10. The part of the face-gear tooth surface that is not

covered with lines Ls2 is the fillet surface. The fillet surface is

generated in the process of cutting by the generatrix G of the

addendum cylinder of the shaper (fig. 9(a)). The fillet surface and

the working part of the face-gear have a common lineL* (fig. 10).

The contact lines on Es and ,Y-2are derived from the following

equations (ref. 9):



1.Contactlines on the shaper surface (fig. 9 (a)) are defined as

rs(u,,Os), Vp )=:(u. O. ¢,)=0 (3)

2. Contact lines on the face-gear surface (fig. 10) are deter-

mined as

r:(us, "s(us,Os),:(us,
(4)

Here, (Us, Os) are the Gaussian coordinates of the involute shaper

surface (see Appendix A in ref. 10) and ms is the generalized

parameter of motion.

Tooth surface E2 of the face-gear is represented by equation (4)

in three-parametric form with an implicit function between

parameters (Us, Os, (_s).Fortunately, the equation of meshing

f(us, Os, s)=o (5)

is linear with respect to Us and this enables us to eliminate Us and

represent E2 in two-parametric form as

r2 = r2( Os, (Ps) (6)

Figure 11 shows the cross-sections of the face-gear to depict

the changing tooth profiles on ,Y-2and the pointing at the outside
radius.

Limitations of Face-Gear Tooth Surface

The length of the tooth surface of a face-gear is limited, due to

the possibility of undercutting by the shaper in the dedendum area

and the pointing of the teeth in the addendum area (fig. 10).

The investigation of conditions ofnonundercutting of the face-

gear is based on the theorem that has been proposed by Litvin

(ref. 9). The theory states that there is a limiting line L on the

generating surface (shaper surface Es) that generates singular

points on face-gear surface ,Y,2.The limiting line on Y-scan be

determined with the equation

V: s) + V (s2) = 0 (7)

Here; V(s) is the velocity of contact point in its motion over Ys;
IAs2) is the sliding velocity of the shaper with respect to the face-

gear. More details are given in Appendix B in reference 10.

The pointing of teeth (fig. 10) means that the tooth thickness
on the top of the tooth becomes equal to zero. The location of the

tooth pointing area may be determined by considering the inter-

section of the two opposite tooth surfaces at the top land of a tooth.

Computer programs for determination of limitations of the

length of the face-gears have been developed at the University of

Illinois at Chicago. A quick review of results obtained are

represented in the following charts.

Figure 12 shows the minimum and maximum radius factors

for the face-gear with variotis gear ratio ms2 and the pinion tooth

numbers. In this example, the shaft angle is 80 ° and the pressure

angle is 20°. The program is sufficiently general in thatit has the

ability to generate design charts over a wide range. Knowing the
values of minimum and maximum radius factor we can obtain the

values OfLl and L2 (fig. 13) by multiplying the radius factors by

N2/2P where N2 is the tooth number of the face-gear and P is the

diametral pitch. For design convenience, a unitless design param-

eter Ul = IP where l = L2-L1 is usually considered. This param-

eter is similar to the parameter that express the ratio l/m where

m = 25.4/Pis the module of spur or helical gears. The coefficient

Uldepends on the number of teeth of the pinion and the gear ratio.

The gear ratio must be m12 > 3.8 to obtain Ul> 7. The increase of

the gear ratio reduces the dimensions of the fillet as shown in

figure 14.

Computerized Simulation of Meshing and Contact of Pinion
and Face-Gear

The bearing contact of pinion and face-gear tooth surfaces E1

and E2 is localized using the technique described in the previous

section. Y_1and ,Y,2are in point contact at every instant. The
computerized simulation of meshing and contact of Yl and E2

(Tooth Contact Analysis; TCA) can provide information on

transmission errors and the shift of bearing contact that is caused

by pinion-face-gear misaligument.

The idea of TCA is based on equations of tangency of

contacting surfaces (fig. 15). Such equations express that the

contacting surfaces Yl and Z2 have, at any instant, a common

position vector and collinear normals at their contact point M. For

more details see reference 9 (and Appendix C in ref. 10).

Our investigation shows that the gear misalignment (change of

the shaft angle, crossing of axes instead of intersection, axial

displacement of face-gear) does not cause transmission errors.

This is a great advantage of face-gear drives in comparison with

spiral bevel gear drive.

However, gear misalignment does result in the shift of the

contact path on the gear surfaces. The patterns of the beating

contact can be determined considering the motion of the instan-

taneous contact ellipse over the pinion-gear tooth surfaces in the

process of meshing. The dimensions and orientation of the

instantaneous contact ellipse can be found if the pfinicpal directions



andcurvaturesof the contacting surfaces are determined at the

current point of surface contact (ref. 9). The equations for compu-

tation of principal curvatures and directions are given in Appen-
dix D in reference 10. The elastic approach of the surfaces is
considered as known.

It is possible to control the location of the beating contact by

changing of the machine angle 7m that is formed by the axes of the

shaper and the face-gear. However, the small magnitude of Ayrn

can be only implemented with a very precise control of 7ra.

Figure 16 shows an example of the face-gear bearing contact

prediction. The shift of bearing contact caused by gear misalign-

ment and change in machine angle is given in reference 10.

Theoretical and Real Contact Ratio

The contact ratio mc is determined with the equation

(2)_th(1)
1 V'I

rac -- 360 °

translation that is parallel to the pinion axis, must be provided. The

number of steps for the feeding motion (reciprocating translation)

that corresponds to one cycle must be large enough to provide a

smooth surface. (One cycle means the time that is required for
grinding of one side surface of one tooth.) The deviations of

ground surfaces from the theoretical ones for cases with 40 and

20 steps are shown in figure 18.

The second method for grinding is based on the following

ideas: (1) the grinding wheel is a cone or a surface of revolution,

(2) the cone is in continuous tangency with the theoretical surface

of the face-gear at any point of the chosen mean line of the

theoretical surface, (3) the cone moves along the mean line and

changes its orientation (fig. 19), and (4) the installment of the cone

at any moment must be determined in accordance with the

curvatures of the face-gear. The deviations of ground surface from

the theoretical one by this method are shown in figure 20.

(8)

Both of the methods of grinding can be performed using a six-

degree-of-freedom machine that is numerically controlled.

EXPERIMENTAL TESTS

Here; _2) and _1) represent the angles of rotation of the

pinion that correspond to the beginning and the end of meshing for

one pair of teeth; N1 is the number of pinion teeth. Angles

_2) and _1) can be determined as the output data from the

TCA computer program. The approximate value of

AO = _2)_¢_!) can be determined from drawings of figure 10
that show the instantaneous contact lines referred to angles of

pinion rotation. Taking into account that for drawings of figure 10

the stepsize of _1 is 3 °, the number of contact lines that cover the

surface of face-gear is 10, andNl = 28 (see table II), we obtain that

the theoretical value of mc is 2.33.

The localization of bearing contact is accompanied with the

reduction of contact ratio, since the number of potential contact

ellipses is reduced. Using an approach that, is, ,,similar to the one

discussed above, we have determined that/_2)-_1)) is 20"8°'
and the real contact ratio is 1.62.

Basic Ideas of Grinding

Two methods of grinding have been proposed: (1) the first one

is based on simulation of generation of the face-gear by a shaper

and (2) the second one is based on applicaton of a tool that is in

quasi-line contact with the theoretical surface of the face-gear.

The basic prinicples of the first method are as follows: (1) the

axial section of the grinding wheel is an involute curve (fig. 17),

(2) the relative motion of the grinding wheel with respect to the

face-gear is the same as the pinion and face-gear being in mesh,

and (3) an additional motion of the grinding wheel, reciprocating

Experimental tests on face-gears were performed in the NASA

Lewis spiral bevel gear rig (ref. ll).The face-gears tested (fig. 21)

were basically a half-size version of the MDHC/Lucas ART

design. The gears were 16 pitch with 28 teeth on the pinion and

107 on the face-gear. The shaft angle was 90 ° to accommodate the

rig. The gears were made of Maraging 300 steel per AMS 6514.

The pinions were nitrided and ground with a case hardness of

Rc 58. The face-gears were shaper cut and hardened toRc 52. For

the tests, 100-percent test torque was defined as 68 N°m

(600 in.°lb)pinion torque for a power of 135 kW (180 hp) at

19 000 rpm pinion speed. The test torque provided slightly

increased bending and compressive stresses when compared to

the full scale design.

The NASA Lewis spiral bevelgear rig (fig. 22) operates on a

closed loop or torque-regenerative principle. Two sets of pinion/

face-gears are used in the loop with the two pinions connected by
a cross shaft. The outputs of the two face-gears are connected

through a helical gear mesh. A hydraulic loading system is

connected to the helical mesh which puts a thrust load on the

mesh, and thus, the torque in the loop. A variable speed motor is

connected by a belt to the loop and powers the test stand.

A limited amount of test gears were available for test (four

pinions and four face-gears). The objective of the tests were to

demonstrate the feasibility of face-gears and determine the failure

modes for high power applications. Four sets of gears success-
fully completed 26-hr (30 × 106 pinion cycles) endurance runs at

100-percent speed and torque. The gears were run at 74 °C

(165 °F) oil inlet temperature using an ample supply of

DOD-L--85734 lubricant at approximately 0.8 gpm per mesh.



Thecontactpattern on the teeth was good and developed on the

full tooth of the face-gear. The pinion teeth showed only minimal

change from their original manufactured condition. The face-gear
teeth, however, had some surface distress. The teeth from the test

side (pinion driving the face-gear) were generally in good condi-

tion except for small areas of micro-pitting randomly scattered

over the active profile. The teeth from the slave side (face-gear

driving the pinion) had small pit lines in some instances in the

middle region of the teeth along with micro-pitting in the root area

of the active profile.

The gears were subsequently run at 200-percent torque and

100-percent speed. The first test (two sets of gears) lasted the

26 hr. The pinions and the test-side face-gears showed slightly

increased wear but were generally in good shape. The slave-side
face-gear surface distress became more pronounced. The second

test (the additional two sets of gears) was suspended after about
10.5 hr due to a tooth breakage on one of the face-gears (slave

side). The breakage originated from the surface pit line from the

previous test. The remaining components looked basically the

same as in the 100-percent torque tests.

3. The length of the face-gear tooth was limited due to

possible undercutting by the shaper in the dedendum area and

pointing of the teeth in the addendum area. Design charts were

developed to determine minimum inner and maximum outer
radii.

4. The hardened tooth surface can be ground with acceptable

deviations by two methods. One of these methods need applica-

tion of a six-degree-of-freedom machine. One of the six degrees
of freedom is required to rotate the grinding cone for speed of

manufacture.

5. A finite element analysis of the pinion and face-gear

structure in a split-torque design provided data on load sharing.

Among the cases studied, an even torque split was provided when

the stiffness of the pinion shaft front support (close to the face-

gear mesh) was about an order of magnitude less than a typical

bearing support.
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TABLE I.--ADVANCED ROTORCRAFT TRANSMISSION

TORQUE SPLITTING PERCENTAGES

Case

number

Support of pinion shaft

Front-end Rear-end

spring rate, spring rate,

lb/in, lb/in.

K=0 K=_

(free float) (restrained)

K=** K=**

(restrained) (restrained)

aK=6.0 × 105 aK=6.0 × 105

K=6.0× 104 K=6.0× 105

K=6.0 × 104 K=6.0X 105

K=6.0 X 104 K=6.0 × 105

K=,_ K=6.0×105

K=6.0X 104 K=6.0×I05

K=6.0 x 104 K=6.0 × 105

Gear meshing clearance (inch)

due to backlash adjustment

Face-down Face-up

gear gear

0 0

0 0

0 0

0 0

0 .0005

0 .005

0 .005

.003 0

.005 0

Split torque

percentage,

percent

Face-down Face-up

gear gear

51.58 A8.42

56.87 43.13

53.11 46.89

51.41 48.59

51.55 48.45

52.86 47.14

81.66 18.34

50.54 49.46

49.97

a6.0X 105Ib/in.is the translational spring rate for typical bearingand housingsupport in helicopter transmissions.

50.03

TABLE II. - INPUT FACE-

GEAR DRIVE DESIGN

DATA

Design parameter Input data i

Shaft angle 80 °

Pinion number of teeth 28

Gear number of teeth 107

Diametral pitch 8

Pressure angle 25°
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gear tooth surface.

Figure 9._Contact lines on shaper tooth surface.
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Figure 11 .---Cross-sections of face-gear tooth surface.
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Figure 14.--Modified face-gear tooth.
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